

PHIDIAS Scientific User Committee

Francois Bodin

University of Rennes

The PHIDIAS project has received funding from the European Union's Connecting Europe Facility under grant agreement n° INEA/CEF/ICT/A2018/1810854.

The Committee have a general guidance role including

- Provide guidance and opinion on project technical challenges, solutions and choices
- A Guide the project technical architecture in the best direction
- A Connect the project to world-wide groups and organisations
- It aims at helping better understanding how to mix HPC culture with Data culture

And how to better use PHIDIAS advances?

PHIDIAS coordinator

& Boris Dintrans

External experts

Jean-Thomas ACQUAVIVA DDN Storage Evolve coordinator, data logistic	Michèle FICHAUT IFREMER SeaDataNet / SeaDataCloud	Maryvonne GERIN- LASLIER CNRS Astrophysics, research infrastructure	Sylvie JOUSSAUME IPSL Climate
Bruno RAFFIN INRIA Scientific workflows	Debora TESTI CINECA European Open Science Cloud	Jean-Pierre VILOTTE IPGP Seismology, INSU	

SUC Coordinator & President

- 🕸 François Bodin
 - * HPC, AQMO coordinator, former EXDCI2 scientific director

Committee meeting were generally splitted in two parts

A short overview of last PHIDIAS results

A debate between PHIDIAS and the committee members on a previously chosen topic

An example to follow

A The debate was

A Can PHIDIAS be the support for "a metadata centric approach"

At This is of interest of some partners

To explore the implementation of Machine Actionable Data/Project Plan

A To understand how to continue PHIDIAS work

PHIDIAS Data Logistic & Compute Challenges

A Distributed infrastructures

- Volume of data available to a scientist is much larger than what can be hosted in a given data center
 - A HPC center is a data cache
 - A Protocol to update the cache is not the scientist problem
- Large scientific instrument important data sources
- Exascale systems at least x petascale data size
 - Transferring a Petabyte at 10Gb/s —> 9 days full speed
- A Data resource essence differs from compute and storage
 - Not always local, not a commodity, no substitution
 - Volume of data available to scientist >> storage capabilities of HPC centers
- A Data locality must drive compute resource allocation
 - A Most processing is performed remotely where the data is
 - * Efficiency must be evaluated at the global workflow level

R ZRR

- & Cyber-security constraints
- **Resources allocation**
- **A FAIR requirements**
- Reproducibility
- A Offline capabilities
 - A Oceanographic ships
- A Online in flux processing
 - A Pipelining data transfers and processing (in transit processing)
 - & SKA for instance

A Hopefully the scientific user committee has help the project to make progresses I

The End

The PHIDIAS project has received funding from the European Union's Connecting Europe Facility under grant agreement n° INEA/CEF/ICT/A2018/1810854.